INDIAN SCHOOL MUSCAT

HALF YEARLY EXAMINATION

SEPTEMBER 2019

CLASS IX

Marking Scheme -MATHEMATICS

Q.NO.	Answers Set A	Marks (with split up)
1	SECTION A ($20 \times 1=20$) (a) $0.32010010001 \ldots$	1 mark each for qns. 1-20
2	(c) $\sqrt{2} x^{2}-3 x+6$	
3	(d) quadrants I and IV	
4	(d) -1	
5	(b) 1	
6	(b) y-axis	
7	(a) A and C	
8	(c) 120°	
9	(b) $\triangle \mathrm{CBA} \cong \triangle \mathrm{PRQ}$	
10	(c) 47°	
11	0.3162	
12	55°	
13	1/5	
14	60°	
15	(-4, -5)	
16	$\mathrm{a}=-5$	
17	120°	
18	9984	
19	PR	
20	$\mathrm{P}=14$	
21	```SECTION -B (6 x 2 = 12) Let x=0.5777... 10x=5.777... 100x=57.777... solving, we get }x=26/4```	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
22	$9 a^{2}+4 b^{2}+25 c^{2}-12 a b-20 b c+30 a c$ (OR) $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+z x)$ substituting the given values and we get $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=35$	
23	$(0,0)(8,0)$	$1+1$
24	$-2 \mathrm{x}+3 \mathrm{y}+4=0,5 \mathrm{x}+7=0$	1+1
25	$5 x=180^{\circ}$ implies $x=36^{\circ}$ smaller angle is 72° (OR) $x+10 x+40+2 x-30^{\circ}=180^{\circ}$ After solving we get, $x=40^{\circ}$. angles of a triangle are $50^{\circ}, 80^{\circ}$ and 50° this implies triangle is an isosceles $\Delta l e$.	$\begin{aligned} & \hline 1+1 / 2+1 / 2 \\ & 1 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

26	Given, to prove and proof	
27	$\text { SECTION }-C(8 \times 3=24)$ Construction - no. line, Perpendicular, showing no. on the number line, unit scale	$1 / 2+1+1+1 / 2$
28	$\mathrm{a}, \mathrm{c}, \mathrm{e}$ are irrationals, b, d, and f are rationals	
29	By remainder thm. $f(3)=g(3)$ $27 a+36+9-4=27-12+a$ By Solving, we get $a=-1$ (OR) By taking LCM, we get $\frac{a^{3}+b^{3}+c^{3}}{3 a b c}=3 \quad\left(a^{3}+b^{3}+c^{3}=3 a b c\right)$	
30	q.30.from set B (Or) $y+2 y+69=180^{\circ}$ (linear pair) solving we get $y=37^{\circ}$ $37^{\circ}+x+x+13^{\circ}=180^{\circ}$ (angle sum property of a triangle) Implies $x=65^{\circ}$ Therefore, the angles are $37^{\circ}, 65^{\circ}$ and 78°	
31	$\begin{aligned} & \text { In } \triangle A B C, A B=A C \text { implies } \angle B=\angle C \\ & \text { In } \triangle A B E \text { and } \triangle A C D \\ & A B=A C \\ & \angle B=\angle C \\ & B E=C D \\ & \text { Therefore }, \triangle A B E \cong \triangle A C D(B y \text { SAS } \cong R U L E) \\ & A E=A D(C P C T) \end{aligned}$	
32	Given, to prove, construction and proof.	
33	Let the numbers be x and y $Y=3 x$ $(1,3),(2,6),(3,9)$ or any other solutions....	
34	(i) $\left(3 p-\frac{1}{6}\right)^{3}$ (ii) $(2 x+7 y)\left(4 x^{2}-14 x y+49 y^{2}\right)$	
35	SECTION-D $(6 \times 4=24)$ Rationalizing the denominator and on simplification we get $\quad \mathrm{a}=$ 0 and $b=-2$	
36	$x=-1$ is a zero of the polynomial, quotient is $2 x^{2}+x-10$ using splitting the middle term we get, $(x+1)(2 x+5)(x-2)$	
37	Any three solutions Pt. (3, -2) does not lie on the graph.	
38	Given, figure, to prove and proof. (OR) $\begin{aligned} & \angle \mathrm{QPS}+\mathrm{x}=\angle \mathrm{RPT} \\ & \angle \mathrm{QPS}=40^{\circ} \\ & \angle \mathrm{QPS}+\mathrm{x}+\mathrm{x}+30^{\circ}=90^{\circ} \\ & \text { On solving we get } \mathrm{x}=10^{\circ} \end{aligned}$	
39	Given, figure, to prove and proof.	
40	After plotting the points on the graph, we get trapezium and its area $=15$ sq. units.	

